Opsonic and Protective Properties of Antibodies Raised to Conjugate Vaccines Targeting Six Staphylococcus aureus Antigens
نویسندگان
چکیده
Staphylococcus aureus is a major cause of nosocomial and community-acquired infections for which a vaccine is greatly desired. Antigens found on the S. aureus outer surface include the capsular polysaccharides (CP) of serotype 5 (CP5) or 8 (CP8) and/or a second antigen, a β-(1→6)-polymer of N-acetyl-D-glucosamine (PNAG). Antibodies specific for either CP or PNAG antigens have excellent in vitro opsonic killing activity (OPKA), but when mixed together have potent interference in OPKA and murine protection. To ascertain if this interference could be abrogated by using a synthetic non-acetylated oligosaccharide fragment of PNAG, 9GlcNH(2), in place of chemically partially deacetylated PNAG, three conjugate vaccines consisting of 9GlcNH(2) conjugated to a non-toxic mutant of alpha-hemolysin (Hla H35L), CP5 conjugated to clumping factor B (ClfB), or CP8 conjugated to iron-surface determinant B (IsdB) were used separately to immunize rabbits. Opsonic antibodies mediating killing of multiple S. aureus strains were elicited for all three vaccines and showed carbohydrate antigen-specific reductions in the tissue bacterial burdens in animal models of S. aureus skin abscesses, pneumonia, and nasal colonization. Carrier-protein specific immunity was also shown to be effective in reducing bacterial levels in infected lungs and in nasal colonization. However, use of synthetic 9GlcNH(2) to induce antibody to PNAG did not overcome the interference in OPKA engendered when these were combined with antibody to either CP5 or CP8. Whereas each individual vaccine showed efficacy, combining antisera to CP antigens and PNAG still abrogated individual OPKA activities, indicating difficulty in achieving a multi-valent vaccine targeting both the CP and PNAG antigens.
منابع مشابه
Comparative opsonic and protective activities of Staphylococcus aureus conjugate vaccines containing native or deacetylated Staphylococcal Poly-N-acetyl-beta-(1-6)-glucosamine.
Staphylococcus aureus and Staphylococcus epidermidis both synthesize the surface polysaccharide poly-N-acetyl-beta-(1-6)-glucosamine (PNAG), which is produced in vitro with a high level (>90%) of the amino groups substituted by acetate. Here, we examined the role of the acetate substituents of PNAG in generating opsonic and protective antibodies. PNAG and a deacetylated form of the antigen (dPN...
متن کاملComparative Opsonic and Protective Activities of Staphylococcus aureus Conjugate Vaccines Containing Native or Deacetylated Staphylococcal Poly-N-Acetyl- -(1-6)-Glucosamine
متن کامل
Protein antigens increase the protective efficacy of a capsule-based vaccine against Staphylococcus aureus in a rat model of osteomyelitis.
Staphylococcus aureus is an invasive bacterial pathogen, and antibiotic resistance has impeded adequate control of infections caused by this microbe. Moreover, efforts to prevent human infections with single-component S. aureus vaccines have failed. In this study, we evaluated the protective efficacy in rats of vaccines containing both S. aureus capsular polysaccharides (CPs) and proteins. The ...
متن کاملAnimal and human antibodies to distinct Staphylococcus aureus antigens mutually neutralize opsonic killing and protection in mice.
New prophylactic approaches are needed to control infection with the Gram-positive bacterium Staphylococcus aureus, which is a major cause of nosocomial and community-acquired infections. To develop these, greater understanding of protective immunity against S. aureus infection is needed. Human immunity to extracellular Gram-positive bacterial pathogens is primarily mediated by opsonic killing ...
متن کاملProtective Efficacy and Mechanism of Passive Immunization with Polyclonal Antibodies in a Sepsis Model of Staphylococcus aureus Infection
Staphylococcus aureus (S. aureus) is an opportunistic bacterial pathogen responsible for a diverse spectrum of human diseases, resulting in considerable yearly mortality rates. Due to its rapid acquisition of antibiotic resistance, it becomes increasingly difficult to cure S. aureus infections with conventional antibiotics. Immunotherapy represents a promising alternative strategy to prevent an...
متن کامل